### REMEDIAL SITE ASSESSMENT DECISION - EPA NEW ENGLAND

Site Name: IDCVacant Lot (Lot 135) EPA ID#: RID045364742

Address: 7 Wellington Road City: Lincoln State: RI Refer to Report Dated: February 19, 1997 Report type: Mini-SI Report developed by: Weston START **DECISION:** |X| 1. Further Remedial Site Assessment under CERCLA (Superfund) is not required because: |X| 1a. Site does not qualify for further remedial | | 1b. Site may qualify for further | | RCRA site assessment under CERCLA action, but is deferred to: | | NRC (No Further Remedial Action Planned - NFRAP) 2a. (optional) Priority: | | Higher | | Lower 2b. Activity | | PA | | HRS evaluation Type: | | SI | | Other: **DISCUSSION/RATIONALE:** Low HRS score. Report Reviewed and Approved by: Sharon M. Hayes Signature: Date:

Signature:

EPA Form #9100-3

Sharon M. Hayes

Site Decision Made by:

Date:

### REVISED MINI-SITE INSPECTION DATA SUMMARY FOR IDS BUILDING (LOT 104) and IDS VACANT LOT (LOT 135) LINCOLN, RHODE ISLAND

CERCLIS No. RID987493319 and RID045364742 TDD No. 95-10-0002A

Prepared by:

Roy F. Weston, Inc. (WESTON®)
Superfund Technical Assessment and Response Team (START)
217 Middlesex Turnpike
Burlington, MA 01803

17 April 1997

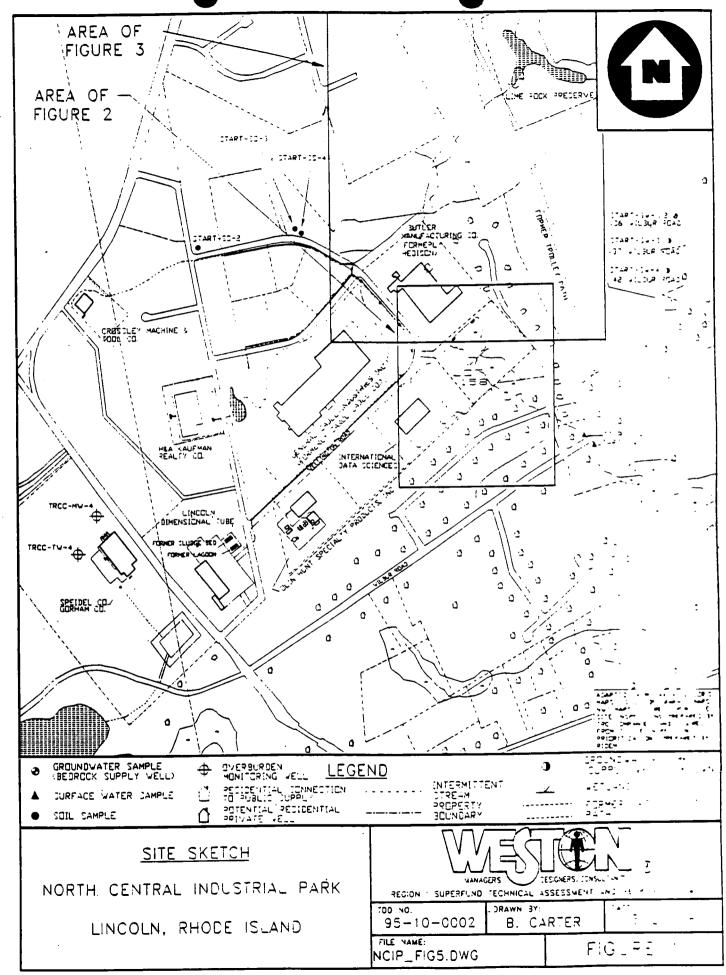
| Region I START         |                 |  |
|------------------------|-----------------|--|
| Reviewed and Approved: |                 |  |
| Jack Padden            | 4 17 97<br>Date |  |
| Site Leader            |                 |  |
| Mirlh                  | 4/17/97         |  |
| Joseph Schmidl         | Date            |  |
| Project Leader         |                 |  |
| mak) mrall             | 4/21/97         |  |
| OA Review              | Date            |  |

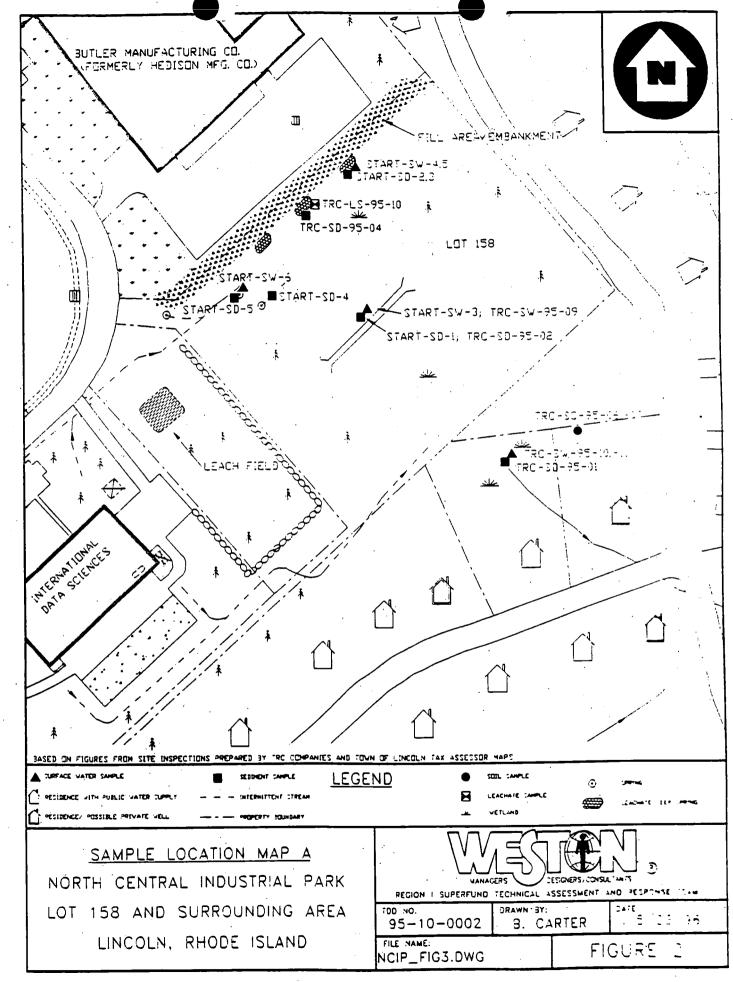
#### **DISCLAIMER**

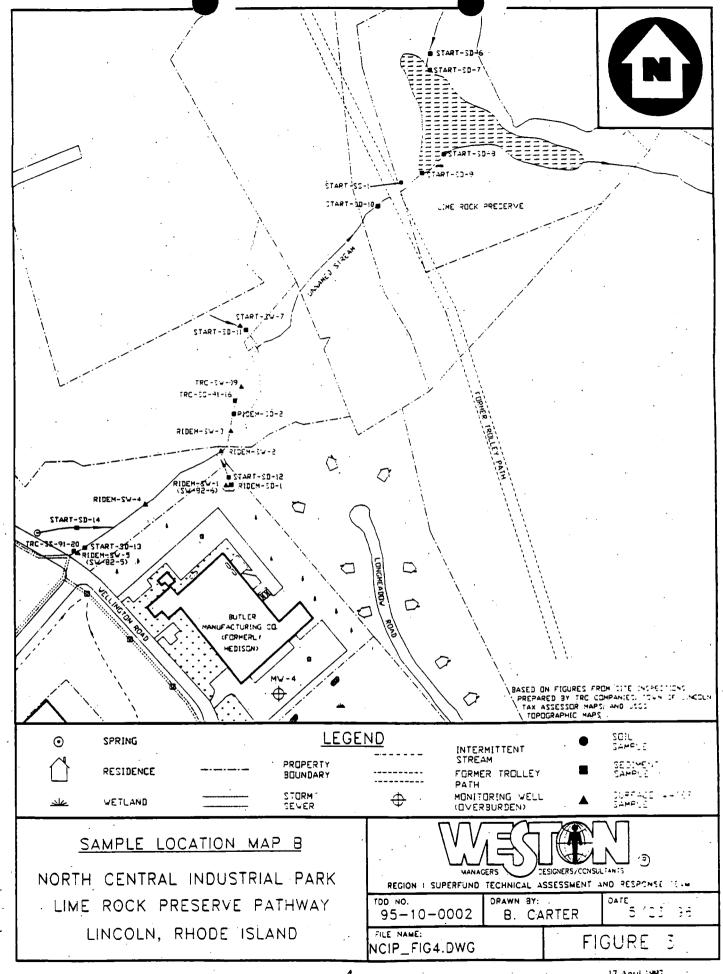
This report was prepared solely for the use and benefit of the U.S. Environmental Protection Agency (EPA-New England), Office of Site Remediation and Restoration for the specific purposes set forth in the contract between the EPA-New England and the Roy F. Weston, Inc. (WESTON®), Superfund Technical Assessment and Response Team (START). Professional services performed and reports generated by START have been prepared for EPA-New England purposes as described in the START contract. The information, statements, and conclusions contained in the report were prepared in accordance with the statement of work, and contract terms and conditions. The report may be subject to differing interpretations or misinterpretation by third parties who did not participate in the planning, research or consultation processes. Any use of this document or the information contained herein by persons or entities other than the EPA-New England shall be at the sole risk and liability of said person or entity. START, therefore, expressly disclaims any liability to persons other than the EPA-New England who may use or rely upon this report in any way or for any purpose.

Revised Mini-Site Inspection Data Summary IDS Building (Lot 104) and IDS Vacant Lot (Lot 135) Lincoln, Rhode Island

CERCLIS Nos. RID987493319 and RID045364742 TDD No. 95-10-0002A Work Order No. 11098-011-001-1985-70


The Roy F. Weston, Inc. (WESTON®), Superfund Technical Assessment and Response Team (START) conducted environmental sampling on 18 June 1996 for the nine North Central Industrial Park CERCLIS sites in Lincoln, Rhode Island, as part of a Mini-Site Inspection (Mini-SI). The samples collected by START personnel were summarized in a Trip Report submitted to EPA-New England on 9 July 1996. Analytical results for the surface water, drinking water, soil, and sediment samples collected during this sampling event have been reviewed by START personnel using EPA-New England criteria. Figures 1, 2, and 3 depict START sample locations.


The following tables summarize the organic compounds and inorganic elements detected through Contract Laboratory Program (CLP) analyses of START environmental samples. For each sample location, a compound or element is listed if it is detected at three times or greater than the matrix reference sample concentration. However, if the compound or element is not detected in the reference sample, the reference sample's quantitation limit (SQL) (for organic analyses) or sample detection limit (SDL) (for inorganic analyses) is used as the reference value. These compounds or elements are listed if they occurred at a value equal to or greater than the reference sample's SQL or SDL and are designated by their approximate relative concentration above these values.


A complete summary of sample locations and analytical results of START environmental samples including quantitation and detection limits is presented in Attachment A. Sample results quantified with a "J" on analytical tables are considered approximate because of limitations identified during CLP data validation. In addition, organic sample results reported at concentrations below quantitation limits and confirmed by mass spectrometry are also qualified by a "J" and considered approximate.

START collected samples from five areas which include (1) Lot 158; (2) the stream that drains Lot 158, (3) the unnamed stream, its tributaries, and Lime Rock Preserve; (4) drinking water wells along Wilbur Road; and (5) background soil locations within the industrial park. All of these samples are potentially relevant to the IDS properties except those collected along the unnamed stream and Lime Rock Preserve, which are not downstream of the IDS properties.

Two surface water samples were collected on Lot 158 to assess the impact attributable to the IDS Properties SW-3 and SW-6. Surface water samples SW-4, SW-5, and SW-7 are the reference samples. No volatile organic compounds, semi-volatile organic compounds (SVOCs), or pesticides/polychlorinated biphenyls (pest/PCBs) were detected in samples SW-3 or SW-6. The inorganic results are summarized in Table 1.







# Table 1 Summary of Analytical Results Lot 158 Surface Water Samples North Central Industrial Park

| Sample<br>Location  | Compound/<br>Element | Sample<br>Concentration |      |     | erence<br>ntration <sup>1</sup> | Comments    |
|---------------------|----------------------|-------------------------|------|-----|---------------------------------|-------------|
| SW-03               | INORGANICS           |                         |      |     | ,                               | <del></del> |
| (AGH69)<br>(MAHZ88) | Cyanide              | 17.9                    | μg/L | 4.3 | μg/L                            | 4.2 × Ref   |
| SW-06               | INORGANICS           |                         |      |     |                                 |             |
| (AMC72)<br>(MAHZ91) | Lead                 | 21.3                    | μg/L | 3.7 | U μg/L                          | 5.8 × SDL   |
|                     | Mercury              | 3.7                     | μg/L | 0.2 | U μg/L                          | 18.5 × SDL  |

1 = The higher concentration among samples SW-4, SW-5, and SW-7 was used as the reference value.

Ref = Reference value.

U = Indicates the sample was analyzed but not detected and reports the detection value.

ug/L = Micrograms per liter. SDL = Sample Detection Limit.

Sediment samples SD-1, SD-4, and SD-5 were collected from the wetland on Lot 158. No VOCs or Pest/PCBs were detected in sediment samples SD-1, SD-4, or SD-5. No inorganic compounds were detected significantly above background in SD-1 or SD-5. Samples SD-2 and SD-3 are duplicate samples and along with SD-7 are used as the reference samples. All non-detects for samples SD-1 through SD-5 were rejected because of high moisture content. The results are summarized in Table 2.

Table 2
Summary of Analytical Results
Lot 158 Sediment Samples Analysis
North Central Industrial Park

| Sample<br>Location  | Compound/<br>Element | Sample Reference Concentration Concentration |           | Comments  |
|---------------------|----------------------|----------------------------------------------|-----------|-----------|
| SD-4                | INORGANICS           |                                              |           |           |
| (AMC56)<br>(MAHZ75) | Cobalt               | 837 J mg/kg                                  | 165 mg/kg | 5.1 × Ret |

The higher value for each compound among samples SD-2, SD-3, SD-6, and SD-11 is used as the reference value.

Ref = Reference value.

mg/kg = Milligram per kilogram.

J = Quantitation is approximate due to limitations identified during the quality control review.

Surface water samples SW-1 and SW-2 were collected near Wilbur Road from the stream that drains Lot 158. Sample SW-7 is the reference sample for SW-1 and SW-2 (Note: tetrachloroethylene was detected at 5 J  $\mu$ g/L and 1,2-dichloroethylene was detected at 4 J  $\mu$ g/L in the reference sample, SW-7). No VOCs, SVOCs, or Pest/PCBs were detected in the samples SW-1 and SW-2. The inorganic results are summarized in Table 3.

Table 3
Summary of Analytical Results of
Surface Water Samples Collect from Downstream of Lot 158
North Central Industrial Park

| Sample<br>Location  | Compound/<br>Element | Sample<br>Concentration | 1       | ference<br>entration' | Comments  |
|---------------------|----------------------|-------------------------|---------|-----------------------|-----------|
| SW-01               | INORGANICS           |                         |         |                       |           |
| (AMC67)<br>(MAHZ86) | Cobalt               | 1.6 J μ                 | g/L 1.0 | U ug/L                | 1.6 × SDL |
| SW-02               | INORGANICS           |                         |         |                       |           |
| (AMC68)<br>(MAHZ87) | Cobalt               | 1.4 J μ                 | g/L 1.0 | U ug/L                | 1.4 × SDL |

= Samples SW-7 is the reference sample.

Ref = Reference value.

J = Quantitation is approximate due to limitations identified during the quality control review.

U = Indicates the sample was analyzed but not detected and reports the detection value.

 $\mu g/L$  = Micrograms per liter. SDL = Sample Detection Limit.

START collected two sediment samples, SD-13 and SD-10, along the unnamed stream that begins at the storm sewer system outfall, which is at the corner of Wellington Road and Carol Drive, and flows to the pond within Lime Rock Preserve. No VOCs were detected in either sample; one pesticide was detected in each sample (one did not meet the criteria for an observed release); two polycyclic aromatic hydrocarbons (PAHs) detected in SD-10 did not meet the criteria for observed release; 12 PAHs were detected in SD-13. Sediment samples SD-11 and SD-6 are the reference samples.

START collected sediment sample SD-14 from a tributary to the unnamed stream. This tributary begins at an apparent groundwater seep near Wellington Road, north of the storm sewer system outfall. This tributary is therefore expected to be heavily influenced by groundwater quality where the unnamed stream near the outfall is expected to be heavily influenced by surface water runoff from the industrial park. SD-14 was collected to investigate the contribution of groundwater contamination to any contamination along the unnamed stream or the pond within Lime Rock Preserve. Two VOCs and 14 SVOCs were detected in SD-14 (including dibenzofuran which was detected below the detection limit of the reference samples) 4,4'-DDD was detected below the reference value.

START collected sediment sample SD-12 from the drainage path that leads from the outfall pipe on the former Hedison Manufacturing Company property (currently operated by Vistawall Architectural Products) to the unnamed stream. No VOCs or Pest/PCBs were detected in SD-12, six PAHs were detected but did not meet the criteria for an observed release.

START collected sediment samples SD-8 and SD-9 from the pond within Lime Rock Preserve near the discharge of the unnamed stream. No VOCs were detected in either sample. DDE was detected in SD-8 below the reference concentration. One and nine PAHs were detected in samples SD-8 and SD-9, respectively, all below the reference concentrations. Sediment samples SD-6, SD-7, and SD-11 are reference samples. Results are summarized in Table 4.

Table 4 summarizes the results of all START sediment samples collected along the Lime Rock Preserve drainage pathway.

Table 4

Summary of Analytical Results

Lime Rock Preserve Drainage Pathway Sediment Sample Analysis

North Central Industrial Park

| Sample<br>Location  | Compound/<br>Element                | Sample<br>Concentration |         | Reference<br>Concentration <sup>1</sup> |   |               | Comments         |  |  |  |  |
|---------------------|-------------------------------------|-------------------------|---------|-----------------------------------------|---|---------------|------------------|--|--|--|--|
|                     | UNNAMED STREAM                      |                         |         |                                         |   |               |                  |  |  |  |  |
| SD-10               | PESTICIDES/PCBS                     |                         |         |                                         |   |               |                  |  |  |  |  |
| (AMC62)<br>(MAHZ81) | Dieldrin <sup>2</sup>               | 16                      | J μg/kg | 10                                      | U | μg/kg         | 1.6 × SQL        |  |  |  |  |
|                     | INORGANICS                          |                         |         |                                         |   |               |                  |  |  |  |  |
|                     | Potassium                           | 1,360                   | mg/kg   | 453                                     | U | mg/kg         | 3.0 × SDI        |  |  |  |  |
| SD-13               | SVOCs                               |                         |         |                                         |   | -             | ,                |  |  |  |  |
| (AMC65)<br>(MAHZ84) | Phenanthrene <sup>3</sup>           | 4,400                   | μg/kg   | 130                                     | J | μg/kg         | 33.8 + Ret       |  |  |  |  |
| ·                   | Fluoranthene <sup>3</sup>           | 7,600                   | μg/kg   | 340                                     | J | μg/kg         | 22.4 × Ret       |  |  |  |  |
|                     | Pyrene <sup>3</sup> .               | 5,300                   | μg/kg   | 250                                     | J | μg/ <b>kg</b> | 21.2 × Ret       |  |  |  |  |
| ,                   | Benzo(a)anthracene3                 | 2,100                   | J μg/kg | 990                                     | U | μg/kg         | 2.1 × SQL .      |  |  |  |  |
|                     | Chrysene <sup>3</sup>               | 3,000                   | J μg/kg | 990                                     | Ü | μg/kg         | 3.0 × SQL        |  |  |  |  |
|                     | Benzo(b)fluoranthene <sup>3</sup>   | 4,000                   | J μg/kg | 110                                     | J | μg/kg         | 36.4 × Ret       |  |  |  |  |
|                     | Benzo(k)fluoranthene <sup>3</sup>   | 1,500                   | J μg/kg | 530.                                    | Ū | μg/kg         | 2.8 × SQL        |  |  |  |  |
| •                   | Benzo(a)pyrene <sup>3</sup>         | 2,200                   | J μg/kg | 530                                     | U | μg/kg         | 4.1 × SQL        |  |  |  |  |
|                     | Indeno(1,2,3-cd)pyrene <sup>3</sup> | 1,000                   | J μg/kg | 990                                     | U | μg/kg         | $1.0 \times SQL$ |  |  |  |  |

Table 4

# Summary of Analytical Results Lime Rock Preserve Drainage Pathway Sediment Sample Analysis North Central Industrial Park (Continued)

| Sample<br>Location           | Compound/<br>Element                | Sample<br>Concentration |         |       | Refere<br>ncentr |       | Comments   |  |  |
|------------------------------|-------------------------------------|-------------------------|---------|-------|------------------|-------|------------|--|--|
| SD-13<br>(AMC65)<br>(MAHZ84) | Benzo(g,h,i)perylene <sup>3</sup>   | 1,100                   | J μg/kg | 990   | U                | μg/kg | 1.1 × SQL  |  |  |
|                              | INORGANICS                          |                         |         |       |                  |       |            |  |  |
|                              | Copper                              | 63                      | mg/kg   | 16.7  |                  | mg/kg | 3.8 × Ref  |  |  |
|                              | Silver                              | 57.3                    | mg/kg   | 4.0   |                  | mg/kg | 14.3 × Ref |  |  |
|                              | TRIBUTARY TO THE UNNAMED STREAM     |                         |         |       |                  |       |            |  |  |
| SD-14                        | VOCs                                |                         |         |       |                  |       |            |  |  |
| (AMC66)<br>(MAHZ85)          | 1,2-Dichloroethene                  | · 70                    | μg/kg   | 19    | U                | μg/kg | 3.7 × SQL  |  |  |
|                              | Tetrachloroethene                   | 300                     | μg/kg   | 19    | U                | μg/kg | 15.8 × SQL |  |  |
|                              | SVOCs                               |                         |         |       |                  |       |            |  |  |
|                              | Phenanthrene <sup>3</sup>           | 2,100                   | μg/kg   | 530   | U                | μg/kg | 3.9 × SQL  |  |  |
|                              | Fluoranthene <sup>3</sup>           | 2,300                   | μg/kg   | 340   | J                | μg/kg | 6.8 × Ref  |  |  |
|                              | Pyrene <sup>3</sup>                 | 3,300                   | μg/kg   | . 250 | J                | μg/kg | 13.2 × Ref |  |  |
|                              | Benzo(a)anthracene <sup>3</sup>     | 2,100                   | μg/kg   | 990   | Ū                | μg/kg | 2.1 × SQL  |  |  |
|                              | Chrysene <sup>3</sup>               | 2,300                   | μg/kg   | 990   | U                | μg/kg | 2.3 × SQL  |  |  |
|                              | Benzo(b)fluoranthene <sup>3</sup>   | 2,100                   | μg/kg   | 110   | J                | μg/kg | 19.1 × Ref |  |  |
|                              | Benzo(k)fluoranthene <sup>3</sup>   | 800                     | μg/kg   | 100   | J                | μg/kg | 8.0 × Ret  |  |  |
|                              | Benzo(a)pyrene <sup>3</sup>         | 1,500                   | μg/kg   | 530   | U                | μg/kg | 2.8 × SQL  |  |  |
| ·                            | Indeno(1,2,3-cd)pyrene <sup>3</sup> | 1,300                   | μg/kg   | 990   | U                | μg/kg | 1.3 × SQL  |  |  |
|                              | Benzo(g,h,i)perylene3               | 1,400                   | μg/kg   | 990   | U                | μg/kg | 1.4 × SQL  |  |  |
|                              | INORGANICS                          |                         |         |       |                  |       |            |  |  |
|                              | Potassium                           | 954                     | mg/kg   | 453   | U                | mg/kg | 2.1-× SDL  |  |  |

#### Table 4

## Summary of Analytical Results Lime Rock Preserve Drainage Pathway Sediment Sample Analysis North Central Industrial Park (Concluded)

| Sample<br>Location  | Compound/<br>Element                     | Sample<br>Concentration |           | Reference<br>Concentration <sup>1</sup> |         | Comments  |  |  |  |  |
|---------------------|------------------------------------------|-------------------------|-----------|-----------------------------------------|---------|-----------|--|--|--|--|
| · ·                 | HEDISON MFG. CO. PROPERTY DRAINAGE DITCH |                         |           |                                         |         |           |  |  |  |  |
| SD-12               | INORGANICS                               |                         |           |                                         | ,<br>   |           |  |  |  |  |
| (AMC64)<br>(MAHZ83) | Lead                                     | 251                     | mg/kg     | 48.5                                    | J mg/kg | 5.2 × Ref |  |  |  |  |
|                     | Potassium                                | 1,120                   | mg/kg     | 453                                     | U mg/kg | 2.5 × SDL |  |  |  |  |
|                     | POND V                                   | VITHIN LIM              | E ROCK PR | ESERVI                                  | Ξ .     |           |  |  |  |  |
| SD-8                | INORGANICS                               |                         |           |                                         |         |           |  |  |  |  |
| (AMC60)<br>(MAHZ79) | Potassium                                | 818                     | mg/kg     | 453                                     | U mg/kg | 1.8 × SDL |  |  |  |  |
| SD-9                | INORGANICS                               |                         |           |                                         |         |           |  |  |  |  |
| (AMC61)<br>(MAHZ80) | Potassium                                | 3,660                   | mg/kg     | 453                                     | U mg/kg | 8.0 × SDL |  |  |  |  |

- The higher value for each compound among samples SD-6 and SD-11 is used as the reference value.
- This pesticide met the criteria for observed release but is likely attributable to routine application and not disposal practices at any facility within the North Central Industrial Park.
- PAHs were detected in 16 of 18 soil and sediment samples collected by START including background samples. However, the concentrations of the PAHs detected in SD-13 and SD-14 were significantly above background levels.

Ref = Reference value.

J = Quantitation is approximate due to limitations identified during the quality control review.

U = Indicates the sample was analyzed but not detected and reports the detection value.

 $\mu g/kg = Micrograms per kilogram.$ mg/kg = Milligrams per kilogram.

SVOCs = Semivolatile organic compounds.

SQL = Sample Quantitation Limit. SDL = Sample Detection Limit.

START collected drinking water samples from the private wells at 36 Wilbur Road (GW-1 and GW-2), 37 Wilbur Road (GW-3), and 42 Wilbur Road (GW-4). Samples GW-96-13 and GW-96-14 were collected by TRC Companies (TRCC) in 1993 from monitoring wells MW-4 (completed in the overburden) and TW-4 (completed in bedrock), and are used by START as reference samples. Both monitoring wells are on the Speidel/Gorham property. No VOCs. SVOCs, or Pest/PCBs were detected any of the drinking water samples. The inorganic results are summarized in Table 5.

Table 5
Summary of Analytical Results Drinking Water Sample Analysis for NCIP

| Sample<br>Location    | Compound/<br>Element | Sample<br>Concentration |        | Refe<br>Conce | Comments |            |
|-----------------------|----------------------|-------------------------|--------|---------------|----------|------------|
| GW-1                  | INORGANICS           |                         |        |               |          |            |
| (DAF060)<br>(AMC74)   | Calcium              | 49,200                  | μg/L   | 5,310         | μg/L     | 9.3 × Ref  |
| (MAHZ93)              | Potassium            | 4,910                   | μg/L   | 2,510         | U μg/L   | 2 × SDL    |
|                       | Sodium               | 34,100                  | μg/L   | 3,070         | J μg/L   | 11.1 × Ref |
| GW-2                  | INORGANICS           |                         | 7 8 7  |               |          |            |
| (DAF061)<br>(AMC75)   | Calcium              | 46,900                  | μg/L   | 5,310         | μg/L     | 8.8 × Ref  |
| (MAHZ94)              | Potassium            | 4,670                   | μg/L   | 2,510         | U μg/L   | 1.9 × SDL  |
|                       | Sodium               | 32,300                  | μg/L   | 3,070         | J μg/L   | 10.5 × Ref |
| GW-3                  | INORGANICS           |                         |        |               |          |            |
| (DAF062)<br>(AMC76) . | Calcium              | 50,900                  | μg/L   | 5,310         | μg/L     | 9.6 × Ref  |
| (MAHZ95)              | Potassium            | 4,200                   | μg/L   | 2,510         | U μg/L   | 1.7 × SDL  |
|                       | Sodium               | 21,500                  | μg/L   | 3,070         | J μg/L   | 7.0 × Ref  |
| GW-4                  | INORGANICS           |                         | ,      |               |          |            |
| (DAF063)<br>(AMC77)   | Calcium              | 27,200                  | μg/L   | 5,310         | μg/L     | 5.1 × Ref  |
| (MAHZ96)              | Copper               | 68.2                    | μg/L   | 18.1          | J μg/L   | 3.8 × Ref  |
|                       | Potassium            | 2,770                   | μg/L   | 2,510         | U μg/L   | 1.1 × SDL  |
|                       | Sodium               | 17,800                  | μg/L   | 3,070         | J μg/L   | 5.8 × Ref  |
|                       | Zinc                 | 816                     | J μg/L | 85.5          | μg/L     | 9.5 × Ret  |

Ref = Reference value.

J = Quantitation is approximate due to limitations identified during the quality control review.

U = Indicates the sample was analyzed but not detected and reports the detection value.

 $\mu g/L$  = Micrograms per liter. SDL = Sample Detection Limit.

Soil sample SS-1 was collected from the east side of the former trolley path near were the unnamed stream enters the pond within Lime Rock Preserve. START observed a material that appeared to be coal slag on the embankment supporting the former trolley path. Sample SS-1 was collected to investigate weather any substances detected in the pond may be attributable to runoff from the embankment rather than the North Central Industrial Park. No VOCs or Pest/PCBs were detected in SS-1. Naphthalene, 2-methylnaphthalene, and seven PAHs were detected in sample SS-1 below the contract required quantitation limits (CRQLs) and did not meet the criteria for an observed release. Soil samples SS-2, SS-3, and SS-4 are reference samples.